
Администрирование информационных систем

 02.03.03 -Математическое обеспечение и администрирование информационных систем,

направленность (профиль) -разработка и администрирование информационных систем

https//vikchas.ru

Лабораторная работа «Управление

пользователями информационной системы и

их аутентификацией»

Часовских Виктор Петрович
доктор технических наук, профессор кафедры

ШИиКМ, ФГБОУ ВО «Уральский государственный

экономический университет

Екатеринбург 2026

Введение в ASP.NET Core Identity

 ASP.NET Core Identity – это современная система управления пользователями

и их аутентификацией.

 ASP.NET Core Identity обеспечивает:

• Управление пользователями и их профилями

• Хранение учетных данных пользователей с безопасным хешированием

паролей

• Реализацию входа/выхода пользователей

• Поддержку внешних провайдеров аутентификации (Google, Facebook,

Twitter, Microsoft и др.)

• Многофакторную аутентификацию

• Управление ролями и политиками доступа

• Систему управления претензиями (claims)

Основные компоненты

IdentityUser

IdentityUser– это базовый класс, представляющий пользователя в системе. Он

включает такие свойства как:

• UserName

• Email

• PasswordHash

• PhoneNumber

• TwoFactorEnabled

• LockoutEnabled

Вы можете расширить этот класс, добавив в него собственные свойства.

IdentityRole

IdentityRoleпредставляет роль в системе, что позволяет группировать

пользователей по уровню доступа или функциональным обязанностям.

UserManager и RoleManager

http://asp.net/
http://asp.net/
http://asp.net/

UserManagerиRoleManager– это классы, предоставляющие API для работы с

пользователями и ролями соответственно. Они инкапсулируют логику для:

• Создания, обновления и удаления пользователей/ролей

• Поиска пользователей

• Проверки паролей

• Назначения ролей пользователям

• Работы с претензиями и токенами

Подключение Identity к проекту

Шаг 1: Установка пакетов

С#

dotnet add package Microsoft.AspNetCore.Identity.EntityFrameworkCore

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

Шаг 2: Создание контекста данных

С#

public class ApplicationDbContext : IdentityDbContext<IdentityUser>

{

 public ApplicationDbContext(DbContextOptions<ApplicationDbContext>

options)

 : base(options)

 {

 }

}

Шаг 3: Настройка в Startup.cs или Program.cs

С#

// Для .NET 6+

builder.Services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(builder.Configuration.GetConnectionString("DefaultConnec

tion")));

builder.Services.AddIdentity<IdentityUser, IdentityRole>(options => {

 // Настройки Identity

 options.Password.RequireDigit = true;

 options.Password.RequiredLength = 8;

 // Другие настройки...

})

.AddEntityFrameworkStores<ApplicationDbContext>()

.AddDefaultTokenProviders();

Шаг 4: Добавление middleware

С#

// Для .NET 6+

app.UseAuthentication();

app.UseAuthorization();

Базовые операции

Регистрация пользователя

С#

public async Task<IActionResult> Register(RegisterViewModel model)

{

 if (ModelState.IsValid)

 {

 var user = new IdentityUser { UserName = model.Email, Email = model.Email

};

 var result = await _userManager.CreateAsync(user, model.Password);

 if (result.Succeeded)

 {

 await _signInManager.SignInAsync(user, isPersistent: false);

 return RedirectToAction("Index", "Home");

 }

 foreach (var error in result.Errors)

 {

 ModelState.AddModelError(string.Empty, error.Description);

 }

 }

 return View(model);

}

Вход пользователя

С#

public async Task<IActionResult> Login(LoginViewModel model)

{

 if (ModelState.IsValid)

 {

 var result = await _signInManager.PasswordSignInAsync(model.Email,

 model.Password, model.RememberMe, lockoutOnFailure: false);

 if (result.Succeeded)

 {

 return RedirectToAction("Index", "Home");

 }

 ModelState.AddModelError(string.Empty, "Неверный логин или пароль.");

 }

 return View(model);

}

Выход из системы

С#

public async Task<IActionResult> Logout()

{

 await _signInManager.SignOutAsync();

 return RedirectToAction("Index", "Home");

}

Управление ролями

С#

// Создание роли

await _roleManager.CreateAsync(new IdentityRole("Admin"));

// Назначение роли пользователю

var user = await _userManager.FindByEmailAsync("user@example.com");

await _userManager.AddToRoleAsync(user, "Admin");

// Проверка принадлежности пользователя к роли

bool isInRole = await _userManager.IsInRoleAsync(user, "Admin");

Защита контроллеров и действий

С#

// Требует аутентификацию

[Authorize]

public IActionResult SecurePage()

{

 return View();

}

// Требует определенную роль

[Authorize(Roles = "Admin")]

public IActionResult AdminPanel()

{

 return View();

}

// Требует определенную политику

[Authorize(Policy = "RequireAdminRole")]

public IActionResult ManageUsers()

{

 return View();

}

Настройка политик авторизации

С#

builder.Services.AddAuthorization(options =>

{

 options.AddPolicy("RequireAdminRole", policy =>

policy.RequireRole("Admin"));

 options.AddPolicy("CanManageUsers", policy =>

 policy.RequireClaim("Permission", "ManageUsers"));

 options.AddPolicy("AtLeast21", policy =>

 policy.RequireAssertion(context =>

 context.User.HasClaim(c => c.Type == "Age") &&

 int.Parse(context.User.FindFirst(c => c.Type == "Age").Value) >= 21));

});

 ASP.NET Core Identity представляет собой мощное и гибкое решение для

управления пользователями в веб-приложениях. Оно обеспечивает все

необходимые функции для создания безопасной системы аутентификации и

авторизации, при этом оставаясь достаточно гибким для адаптации к

конкретным потребностям вашего проекта.

http://asp.net/

Использование ASP.NET Core Identity значительно упрощает разработку, так

как вам не нужно создавать собственную систему аутентификации с нуля, а

достаточно настроить существующее решение под свои требования.

При разработке серьезных приложений рекомендуется расширить базовый

функционал Identity, добавив такие возможности как многофакторная

аутентификация, подтверждение электронной почты, подробные журналы

входов и блокировка аккаунтов при подозрительной активности.

Цель лабораторной работа “Управление пользователями

информационной системы и их аутентификацией”

Изучить основные принципы работы ASP.NET Core Identity и реализовать

систему аутентификации и авторизации в веб-приложении ASP.NET Core.

Задачи

1. Настроить ASP.NET Core Identity в проекте

2. Реализовать регистрацию и аутентификацию пользователей

3. Настроить управление ролями и политиками

4. Защитить разделы приложения с помощью авторизации

Теоретическая часть

 ASP.NET Core Identity - это система членства, предоставляющая API для

управления пользователями, паролями, ролями, токенами, подтверждением

email и многим другим. Библиотека обеспечивает безопасное хранение

учетных данных и интегрируется с Entity Framework Core для работы с базой

данных.

Основные компоненты Identity:

1. IdentityUser- представляет пользователя

2. IdentityRole- представляет роль в системе

3. UserManager- управляет пользователями

4. SignInManager- обрабатывает вход/выход пользователей

5. RoleManager- управляет ролями

Практическая часть

Часть 1: Настройка проекта

1. Создайте новый проект ASP.NET Core MVC.

2. Добавьте необходимые пакеты NuGet:

http://asp.net/
http://asp.net/
http://asp.net/
http://asp.net/
http://asp.net/
http://asp.net/

3. Microsoft.AspNetCore.Identity.EntityFrameworkCore

4. Microsoft.EntityFrameworkCore.SqlServer

Microsoft.EntityFrameworkCore.Tools

5. Создайте классApplicationUser, наследующийся отIdentityUser:

С#

public class ApplicationUser : IdentityUser

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public DateTime RegistrationDate { get; set; }

}

6. Создайте класс контекста данных ApplicationDbContext:

С#

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>

{

 public ApplicationDbContext(DbContextOptions<ApplicationDbContext>

options)

 : base(options)

 {

 }

 // Можно добавить дополнительные DbSet для других сущностей

}

7. Настройте подключение к базе данных вappsettings.json:

JSON

{

 "ConnectionStrings": {

 "DefaultConnection":

"Server=(localdb)\\mssqllocaldb;Database=IdentityLab;Trusted_Connection=True;

MultipleActiveResultSets=true"

 }

}

8. Зарегистрируйте сервисы в методе Program.cs:

С#

var builder = WebApplication.CreateBuilder(args);

// Добавление контекста данных

builder.Services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(builder.Configuration.GetConnectionString("DefaultConnec

tion")));

// Настройка Identity

builder.Services.AddIdentity<ApplicationUser, IdentityRole>(options => {

 options.Password.RequireDigit = true;

 options.Password.RequiredLength = 8;

 options.Password.RequireNonAlphanumeric = false;

 options.Password.RequireUppercase = true;

 options.Password.RequireLowercase = true;

 options.User.RequireUniqueEmail = true;

 options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(15);

 options.Lockout.MaxFailedAccessAttempts = 5;

})

.AddEntityFrameworkStores<ApplicationDbContext>()

.AddDefaultTokenProviders();

// Настройка cookies

builder.Services.ConfigureApplicationCookie(options => {

 options.LoginPath = "/Account/Login";

 options.AccessDeniedPath = "/Account/AccessDenied";

 options.SlidingExpiration = true;

 options.ExpireTimeSpan = TimeSpan.FromHours(1);

});

// Добавление MVC

builder.Services.AddControllersWithViews();

var app = builder.Build();

// Middleware

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

app.MapControllerRoute(

 name: "default",

 pattern: "{controller=Home}/{action=Index}/{id?}");

app.Run();

9. Создайте и примените миграцию:

10. dotnet ef migrations add InitialCreate

dotnet ef database update

Часть 2: Реализация регистрации и входа в систему

1. Создайте модели представления для входа и регистрации:

С#

// Models/AccountViewModels/RegisterViewModel.cs

public class RegisterViewModel

{

 [Required]

 [Display(Name = "Имя")]

 public string FirstName { get; set; }

 [Required]

 [Display(Name = "Фамилия")]

 public string LastName { get; set; }

 [Required]

 [EmailAddress]

 [Display(Name = "Email")]

 public string Email { get; set; }

 [Required]

 [StringLength(100, MinimumLength = 8)]

 [DataType(DataType.Password)]

 [Display(Name = "Пароль")]

 public string Password { get; set; }

 [DataType(DataType.Password)]

 [Display(Name = "Подтверждение пароля")]

 [Compare("Password", ErrorMessage = "Пароль и его подтверждение не

совпадают.")]

 public string ConfirmPassword { get; set; }

}

// Models/AccountViewModels/LoginViewModel.cs

public class LoginViewModel

{

 [Required]

 [EmailAddress]

 public string Email { get; set; }

 [Required]

 [DataType(DataType.Password)]

 public string Password { get; set; }

 [Display(Name = "Запомнить меня?")]

 public bool RememberMe { get; set; }

}

2. Создайте контроллерAccountController.cs:

С#

using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Mvc;

using YourNamespace.Models.AccountViewModels;

using YourNamespace.Models;

using System.Threading.Tasks;

public class AccountController : Controller

{

 private readonly UserManager<ApplicationUser> _userManager;

 private readonly SignInManager<ApplicationUser> _signInManager;

 public AccountController(

 UserManager<ApplicationUser> userManager,

 SignInManager<ApplicationUser> signInManager)

 {

 _userManager = userManager;

 _signInManager = signInManager;

 }

 [HttpGet]

 public IActionResult Register()

 {

 return View();

 }

 [HttpPost]

 [ValidateAntiForgeryToken]

 public async Task<IActionResult> Register(RegisterViewModel model)

 {

 if (ModelState.IsValid)

 {

 var user = new ApplicationUser

 {

 UserName = model.Email,

 Email = model.Email,

 FirstName = model.FirstName,

 LastName = model.LastName,

 RegistrationDate = DateTime.Now

 };

 var result = await _userManager.CreateAsync(user, model.Password);

 if (result.Succeeded)

 {

 await _signInManager.SignInAsync(user, isPersistent: false);

 return RedirectToAction("Index", "Home");

 }

 foreach (var error in result.Errors)

 {

 ModelState.AddModelError(string.Empty, error.Description);

 }

 }

 return View(model);

 }

 [HttpGet]

 public IActionResult Login()

 {

 return View();

 }

 [HttpPost]

 [ValidateAntiForgeryToken]

 public async Task<IActionResult> Login(LoginViewModel model, string

returnUrl = null)

 {

 ViewData["ReturnUrl"] = returnUrl;

 if (ModelState.IsValid)

 {

 var result = await _signInManager.PasswordSignInAsync(

 model.Email, model.Password, model.RememberMe, lockoutOnFailure:

true);

 if (result.Succeeded)

 {

 if (!string.IsNullOrEmpty(returnUrl) && Url.IsLocalUrl(returnUrl))

 return Redirect(returnUrl);

 else

 return RedirectToAction("Index", "Home");

 }

 if (result.IsLockedOut)

 {

 return RedirectToAction("Lockout");

 }

 else

 {

 ModelState.AddModelError(string.Empty, "Неверная попытка входа.");

 return View(model);

 }

 }

 return View(model);

 }

 [HttpPost]

 [ValidateAntiForgeryToken]

 public async Task<IActionResult> Logout()

 {

 await _signInManager.SignOutAsync();

 return RedirectToAction("Index", "Home");

 }

 public IActionResult AccessDenied()

 {

 return View();

 }

}

3. Создайте представления для входа и регистрации:

Views/Account/Register.cshtml

HTML

@model RegisterViewModel

<h2>Регистрация нового пользователя</h2>

<div class="row">

 <div class="col-md-6">

 <form asp-controller="Account" asp-action="Register" method="post">

 <h4>Создайте новую учетную запись.</h4>

 <hr />

 <div asp-validation-summary="All" class="text-danger"></div>

 <div class="form-group">

 <label asp-for="FirstName"></label>

 <input asp-for="FirstName" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="LastName"></label>

 <input asp-for="LastName" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Email"></label>

 <input asp-for="Email" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Password"></label>

 <input asp-for="Password" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="ConfirmPassword"></label>

 <input asp-for="ConfirmPassword" class="form-control" />

 <span asp-validation-for="ConfirmPassword" class="text-

danger">

 </div>

 <button type="submit" class="btn btn-primary">Регистрация</button>

 </form>

 </div>

</div>

Views/Account/Login.cshtml

HTML

@model LoginViewModel

<h2>Вход в систему</h2>

<div class="row">

 <div class="col-md-6">

 <form asp-controller="Account" asp-action="Login"

 asp-route-returnUrl="@ViewData["ReturnUrl"]" method="post">

 <h4>Используйте свою учетную запись для входа.</h4>

 <hr />

 <div asp-validation-summary="All" class="text-danger"></div>

 <div class="form-group">

 <label asp-for="Email"></label>

 <input asp-for="Email" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Password"></label>

 <input asp-for="Password" class="form-control" />

 </div>

 <div class="form-group">

 <div class="checkbox">

 <label>

 <input asp-for="RememberMe" />

 @Html.DisplayNameFor(m => m.RememberMe)

 </label>

 </div>

 </div>

 <button type="submit" class="btn btn-primary">Войти</button>

 <p>

 <a asp-action="Register">Зарегистрироваться как новый

пользователь

 </p>

 </form>

 </div>

</div>

Часть 3: Настройка ролей и политик

1. Создайте класс инициализатора ролей:

С#

public static class RolesInitializer

{

 public static async Task InitializeAsync(

 IServiceProvider serviceProvider,

 IConfiguration configuration)

 {

 var roleManager =

serviceProvider.GetRequiredService<RoleManager<IdentityRole>>();

 var userManager =

serviceProvider.GetRequiredService<UserManager<ApplicationUser>>();

 // Роли

 string[] roles = { "Admin", "Manager", "User" };

 foreach (var role in roles)

 {

 if (!await roleManager.RoleExistsAsync(role))

 {

 await roleManager.CreateAsync(new IdentityRole(role));

 }

 }

 // Администратор

 string adminEmail = configuration["AdminSettings:Email"];

 string adminPassword = configuration["AdminSettings:Password"];

 if (adminEmail == null || adminPassword == null)

 {

 throw new Exception("Не указаны учетные данные администратора в

конфигурации");

 }

 if (await userManager.FindByEmailAsync(adminEmail) == null)

 {

 ApplicationUser admin = new ApplicationUser

 {

 Email = adminEmail,

 UserName = adminEmail,

 FirstName = "Admin",

 LastName = "Admin",

 RegistrationDate = DateTime.Now

 };

 var result = await userManager.CreateAsync(admin, adminPassword);

 if (result.Succeeded)

 {

 await userManager.AddToRoleAsync(admin, "Admin");

 }

 }

 }

}

2. Добавьте учетные данные администратора вappsettings.json:

JSON

"AdminSettings": {

 "Email": "admin@example.com",

 "Password": "Admin123!"

}

3. Вызовите инициализатор при запуске приложения вProgram.cs:

С#

// После app.Build()

using (var scope = app.Services.CreateScope())

{

 var services = scope.ServiceProvider;

 try

 {

 await RolesInitializer.InitializeAsync(services, builder.Configuration);

 }

 catch (Exception ex)

 {

 var logger = services.GetRequiredService<ILogger<Program>>();

 logger.LogError(ex, "Произошла ошибка при инициализации ролей.");

 }

}

4. Создайте контроллер для управления пользователями:

С#

[Authorize(Roles = "Admin")]

public class UserManagementController : Controller

{

 private readonly UserManager<ApplicationUser> _userManager;

 private readonly RoleManager<IdentityRole> _roleManager;

 public UserManagementController(

 UserManager<ApplicationUser> userManager,

 RoleManager<IdentityRole> roleManager)

 {

 _userManager = userManager;

 _roleManager = roleManager;

 }

 public async Task<IActionResult> Index()

 {

 var users = _userManager.Users.ToList();

 var userViewModels = new List<UserViewModel>();

 foreach (var user in users)

 {

 var roles = await _userManager.GetRolesAsync(user);

 userViewModels.Add(new UserViewModel

 {

 Id = user.Id,

 Email = user.Email,

 FirstName = user.FirstName,

 LastName = user.LastName,

 RegistrationDate = user.RegistrationDate,

 Roles = roles.ToList()

 });

 }

 return View(userViewModels);

 }

 [HttpGet]

 public async Task<IActionResult> Edit(string id)

 {

 var user = await _userManager.FindByIdAsync(id);

 if (user == null)

 {

 return NotFound();

 }

 var userRoles = await _userManager.GetRolesAsync(user);

 var allRoles = _roleManager.Roles.Select(r => r.Name).ToList();

 var model = new EditUserViewModel

 {

 Id = user.Id,

 Email = user.Email,

 FirstName = user.FirstName,

 LastName = user.LastName,

 UserRoles = userRoles.ToList(),

 AllRoles = allRoles

 };

 return View(model);

 }

 [HttpPost]

 [ValidateAntiForgeryToken]

 public async Task<IActionResult> Edit(EditUserViewModel model, string[]

selectedRoles)

 {

 if (!ModelState.IsValid)

 {

 return View(model);

 }

 var user = await _userManager.FindByIdAsync(model.Id);

 if (user == null)

 {

 return NotFound();

 }

 user.Email = model.Email;

 user.UserName = model.Email;

 user.FirstName = model.FirstName;

 user.LastName = model.LastName;

 var result = await _userManager.UpdateAsync(user);

 if (!result.Succeeded)

 {

 foreach (var error in result.Errors)

 {

 ModelState.AddModelError("", error.Description);

 }

 return View(model);

 }

 // Обновление ролей

 var userRoles = await _userManager.GetRolesAsync(user);

 selectedRoles = selectedRoles ?? new string[] { };

 // Удаление ролей

 result = await _userManager.RemoveFromRolesAsync(user,

userRoles.Except(selectedRoles));

 if (!result.Succeeded)

 {

 ModelState.AddModelError("", "Не удалось удалить текущие роли");

 return View(model);

 }

 // Добавление новых ролей

 result = await _userManager.AddToRolesAsync(user,

selectedRoles.Except(userRoles));

 if (!result.Succeeded)

 {

 ModelState.AddModelError("", "Не удалось добавить выбранные роли");

 return View(model);

 }

 return RedirectToAction("Index");

 }

}

5. Создайте модели представления:

С#

public class UserViewModel

{

 public string Id { get; set; }

 public string Email { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public DateTime RegistrationDate { get; set; }

 public List<string> Roles { get; set; }

}

public class EditUserViewModel

{

 public string Id { get; set; }

 [Required]

 [EmailAddress]

 public string Email { get; set; }

 [Required]

 public string FirstName { get; set; }

 [Required]

 public string LastName { get; set; }

 public List<string> UserRoles { get; set; }

 public List<string> AllRoles { get; set; }

}

Часть 4: Защита разделов приложения

1. Создайте защищенный контроллер:

С#

public class SecureController : Controller

{

 [Authorize]

 public IActionResult UserArea()

 {

 return View();

 }

 [Authorize(Roles = "Manager,Admin")]

 public IActionResult ManagerArea()

 {

 return View();

 }

 [Authorize(Roles = "Admin")]

 public IActionResult AdminArea()

 {

 return View();

 }

}

2. Создайте простые представления для этих действий.

3. Обновите _Layout.cshtml, чтобы показывать разные меню в зависимости

от роли пользователя:

HTML

<nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-dark bg-dark

border-bottom box-shadow mb-3">

 <div class="container">

 <a class="navbar-brand" asp-area="" asp-controller="Home" asp-

action="Index">Identity Lab

 <button class="navbar-toggler" type="button" data-toggle="collapse" data-

target=".navbar-collapse">

 </button>

 <div class="navbar-collapse collapse d-sm-inline-flex justify-content-

between">

 <ul class="navbar-nav flex-grow-1">

 <li class="nav-item">

 <a class="nav-link text-light" asp-controller="Home" asp-

action="Index">Главная

 @if (User.Identity.IsAuthenticated)

 {

 <li class="nav-item">

 <a class="nav-link text-light" asp-controller="Secure" asp-

action="UserArea">Личный кабинет

 @if (User.IsInRole("Manager") || User.IsInRole("Admin"))

 {

 <li class="nav-item">

 <a class="nav-link text-light" asp-controller="Secure" asp-

action="ManagerArea">Управление

 }

 @if (User.IsInRole("Admin"))

 {

 <li class="nav-item">

 <a class="nav-link text-light" asp-controller="Secure" asp-

action="AdminArea">Администрирование

 <li class="nav-item">

 <a class="nav-link text-light" asp-controller="UserManagement"

asp-action="Index">Пользователи

 }

 }

 <partial name="_LoginPartial" />

 </div>

 </div>

</nav>

4. Создайте частичное представление _LoginPartial.cshtml:

HTML

@if (User.Identity.IsAuthenticated)

{

 <form method="post" asp-controller="Account" asp-action="Logout"

id="logoutForm" class="navbar-right">

 <ul class="nav navbar-nav navbar-right">

 <li class="nav-item">

 Привет,

@User.Identity.Name!

 <li class="nav-item">

 <button type="submit" class="btn btn-link navbar-btn nav-link text-

light">Выйти</button>

 </form>

}

else

{

 <ul class="nav navbar-nav navbar-right">

 <li class="nav-item">

 <a class="nav-link text-light" asp-controller="Account" asp-

action="Register">Регистрация

 <li class="nav-item">

 <a class="nav-link text-light" asp-controller="Account" asp-

action="Login">Вход

}

Задания для самостоятельной работы

1. Реализуйте функцию подтверждения адреса электронной почты при

регистрации.

2. Добавьте возможность сброса пароля.

3. Реализуйте интеграцию с внешним провайдером аутентификации

(Google, Facebook).

4. Разработайте систему управления пользовательскими претензиями

(claims) для более гибкой авторизации.

5. Добавьте политику, требующую сложный пароль и двухфакторную

аутентификацию для администраторов.

Реферат ответов на контрольные вопросы

1. Что такое ASP.NET Core Identity и какие проблемы она решает?

2. Объясните различие между аутентификацией и авторизацией.

3. Какие компоненты входят в состав ASP.NET Core Identity?

4. Как защитить определенный участок приложения (контроллер или его

метод)?

5. В чем разница между Claims и Roles в контексте авторизации?

6. Как работает хранение паролей в ASP.NET Core Identity?

7. Что такое политики (Policies) и как их использовать для авторизации?

8. Как добавить пользовательские данные в стандартную модель

IdentityUser?

http://asp.net/
http://asp.net/
http://asp.net/

